这篇文章中,文都考研小编将为同学们分享关于考研数学必考题:求极 限的解题方法,考研数学求极 限的方法有哪些呢?下面和小编一起来看看吧。

考研数学必考题求极 限解题方法如下:

1、利用极 限的四则运算法则;

2、利用极 限存在准则;

3、利用关于无穷小的定理(如有界函数乘以无穷小量仍为无穷小量等);

4、利用极 限存在的充要条件;

5、利用等价无穷小代换定理;

6、利用函数的连续性;

7、利用恒等变形;

8、利用两个重要极 限及一些常用极 限;

9、利用洛必达法则求极 限.

(1)在极 限式子中,如果出现有非零的极 限因子,则用极 限的乘法把它分离出去,然后使用洛必达法则,可使计算变得简单。  

(2)在未定型中,若能用简单的等价无穷小替换,则先替换,然后应用洛必达法则,可使求导计算简单;

10、利用导数定义;

11、利用定积分定义;

12、利用泰勒公式.

以上是小编整理的关于考研数学求极 限的解题方法,希望这篇文章可以为同学们提供帮助。小编会继续为同学们分享考研数学备考知识,陪伴广大考生的考研数学复习之路,欢迎同学们持续关注!